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Syllabus	
  
1) First program and introduction to data types and control structures with 
applications for games learning how to use the programming environment Mar 25-27 
2) Objects, encapsulation, abstract data types, data protection and scope April 1-3 
3) Basic data structures and how to use them, opening files and performing 
operations on files – April 8-10 
4) Algorithms on data structures, algorithms for specific tasks, simple AI and planning 
type algorithms, game AI algorithms April 15-17 
Project 1 Due – April 17 
5) More AI: search, heuristics, optimization, decision trees, supervised/unsupervised 
learning – April 22-24 
6) Game API and/or event-oriented programming, model view controller, map reduce 
filter – April 29, May 1 
7) Basic threads models and some simple databases SQLite May 6-8 
8) Graphics programming, shaders, textures, 3D models and rotations May 13-15 
Project 2 Due May 15 
9) How to download an API and learn how to use functions in that API, Windows 
Foundation Classes May 20-22 
10) Designing and implementing a simple game in C++ May 27-29 
11) Selected topics – Gesture recognition & depth controllers like the Microsoft 
Kinect, Network Programming & TCP/IP, OSC June 3-5 
12) Working on student projects - June 10-12 
Final project presentations Project 3/Final Project Due June 12 



Woah!	
  	
  Tic	
  Tac	
  Toe!!!	
  
Welcome	
  to	
  Tic-­‐Tac-­‐Toe	
  
You	
  will	
  make	
  your	
  move	
  by	
  entering	
  a	
  number,	
  0-­‐8.	
  
The	
  number	
  will	
  correspond	
  to	
  the	
  board	
  posiEon	
  as	
  illustrated:	
  
0	
  |	
  1	
  |	
  2	
  	
  
3	
  |	
  4	
  |	
  5	
  	
  
6	
  |	
  7	
  |	
  8	
  
	
  
You	
  want	
  to	
  go	
  first?	
  (y/n)	
  :	
  y	
  
You	
  want	
  to	
  be	
  X	
  or	
  O?	
  (x/o)	
  :	
  X	
  
You	
  want	
  to	
  be	
  X	
  or	
  O?	
  (x/o)	
  :	
  x	
  
	
  	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  
	
  	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  
	
  	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  
	
  
Where	
  do	
  you	
  want	
  to	
  move?	
  (0	
  -­‐	
  8):	
  0	
  
X	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  
	
  	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  
	
  	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  
	
  
X	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  
	
  	
  |	
  O	
  |	
  	
  	
  |	
  	
  
	
  	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  
	
  
Where	
  do	
  you	
  want	
  to	
  move?	
  (0	
  -­‐	
  8):	
  8	
  
X	
  |	
  	
  	
  |	
  	
  	
  |	
  	
  
	
  	
  |	
  O	
  |	
  	
  	
  |	
  	
  
	
  	
  |	
  	
  	
  |	
  X	
  |	
  	
  
	
  
X	
  |	
  	
  	
  |	
  O	
  |	
  	
  
	
  	
  |	
  O	
  |	
  	
  	
  |	
  	
  
	
  	
  |	
  	
  	
  |	
  X	
  |	
  	
  
	
  
Where	
  do	
  you	
  want	
  to	
  move?	
  (0	
  -­‐	
  8):	
  6	
  
X	
  |	
  	
  	
  |	
  O	
  |	
  	
  
	
  	
  |	
  O	
  |	
  	
  	
  |	
  	
  
X	
  |	
  	
  	
  |	
  X	
  |	
  	
  
	
  
X	
  |	
  	
  	
  |	
  O	
  |	
  	
  
	
  	
  |	
  O	
  |	
  	
  	
  |	
  	
  
X	
  |	
  O	
  |	
  X	
  |	
  	
  
	
  
Where	
  do	
  you	
  want	
  to	
  move?	
  (0	
  -­‐	
  8):	
  1	
  
X	
  |	
  X	
  |	
  O	
  |	
  	
  
	
  	
  |	
  O	
  |	
  	
  	
  |	
  	
  
X	
  |	
  O	
  |	
  X	
  |	
  	
  
	
  
X	
  |	
  X	
  |	
  O	
  |	
  	
  
O	
  |	
  O	
  |	
  	
  	
  |	
  	
  
X	
  |	
  O	
  |	
  X	
  |	
  	
  
	
  
Where	
  do	
  you	
  want	
  to	
  move?	
  (0	
  -­‐	
  8):	
  5	
  
X	
  |	
  X	
  |	
  O	
  |	
  	
  
O	
  |	
  O	
  |	
  X	
  |	
  	
  
X	
  |	
  O	
  |	
  X	
  |	
  	
  
	
  
	
  
TIE!	
  
sh:	
  PAUSE:	
  command	
  not	
  found	
  
Russells-­‐MacBook-­‐Pro:mgraessle_Homework4	
  russell$	
  	
  

	
  
X	
  |	
  	
  	
  |	
  O	
  |	
  	
  
	
  	
  |	
  O	
  |	
  	
  	
  |	
  	
  
X	
  |	
  O	
  |	
  X	
  |	
  	
  
	
  
Where	
  do	
  you	
  want	
  to	
  move?	
  (0	
  -­‐	
  8):	
  1	
  
X	
  |	
  X	
  |	
  O	
  |	
  	
  
	
  	
  |	
  O	
  |	
  	
  	
  |	
  	
  
X	
  |	
  O	
  |	
  X	
  |	
  	
  
	
  
X	
  |	
  X	
  |	
  O	
  |	
  	
  
O	
  |	
  O	
  |	
  	
  	
  |	
  	
  
X	
  |	
  O	
  |	
  X	
  |	
  	
  
	
  
Where	
  do	
  you	
  want	
  to	
  move?	
  (0	
  -­‐	
  8):	
  5	
  
X	
  |	
  X	
  |	
  O	
  |	
  	
  
O	
  |	
  O	
  |	
  X	
  |	
  	
  
X	
  |	
  O	
  |	
  X	
  |	
  	
  
	
  
	
  
TIE!	
  
sh:	
  PAUSE:	
  command	
  not	
  found	
  
Russells-­‐MacBook-­‐Pro:mgraessle_Homework4	
  russell$	
  	
  



/*	
  
Use	
  the	
  current	
  empty	
  pieces	
  to	
  have	
  the	
  computer	
  
choose	
  the	
  best	
  move	
  to	
  counter	
  the	
  last	
  human	
  move	
  
*/	
  
void	
  Board::computerMove()	
  
{	
  

	
  //	
  set	
  the	
  list	
  of	
  all	
  the	
  ways	
  to	
  win	
  
	
  int	
  WAYS_TO_WIN	
  [8][3]	
  =	
  {{0,	
  1,	
  2},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {3,	
  4,	
  5},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {6,	
  7,	
  8},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {0,	
  3,	
  6},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {1,	
  4,	
  7},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {2,	
  5,	
  8},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {0,	
  4,	
  8},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {2,	
  4,	
  6}};	
  

	
  
	
  //	
  if	
  computer	
  can	
  win,	
  take	
  that	
  move	
  
	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  8;	
  ++i)	
  
	
  {	
  
	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  COMPUTER	
  &&	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  COMPUTER	
  &&	
  

board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  EMPTY)	
  {	
  
	
   	
   	
  setPiece(WAYS_TO_WIN[i][2],	
  COMPUTER);	
  
	
   	
   	
  return;	
  
	
   	
  }	
  

	
  
	
   	
  else	
  {	
  
	
   	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  COMPUTER	
  &&	
  board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  

COMPUTER	
  &&	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  EMPTY)	
  {	
  
	
   	
   	
   	
  setPiece(WAYS_TO_WIN[i][0],	
  COMPUTER);	
  
	
   	
   	
   	
  return;	
  
	
   	
   	
  }	
  

	
  
	
   	
   	
  else	
  {	
  
	
   	
   	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  COMPUTER	
  &&	
  

board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  COMPUTER	
  &&	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  EMPTY	
  )	
  
	
   	
   	
   	
  {	
  
	
   	
   	
   	
   	
  setPiece(WAYS_TO_WIN[i][1],	
  COMPUTER);	
  
	
   	
   	
   	
   	
  return;	
  
	
   	
   	
   	
  }	
  
	
   	
   	
  }	
  
	
   	
  }	
  
	
  }	
  

	
  
	
  //	
  if	
  human	
  can	
  win,	
  block	
  that	
  move	
  
	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  8;	
  ++i)	
  
	
  {	
  
	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  HUMAN	
  &&	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  HUMAN	
  &&	
  

board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  EMPTY)	
  {	
  
	
   	
   	
  setPiece(WAYS_TO_WIN[i][2],	
  COMPUTER);	
  
	
   	
   	
  return;	
  
	
   	
  }	
  

	
  
	
   	
  else	
  {	
  
	
   	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  HUMAN	
  &&	
  board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  HUMAN	
  

&&	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  EMPTY)	
  {	
  
	
   	
   	
   	
  setPiece(WAYS_TO_WIN[i][0],	
  COMPUTER);	
  
	
   	
   	
   	
  return;	
  
	
   	
   	
  }	
  

	
  
	
   	
   	
  else	
  {	
  
	
   	
   	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  HUMAN	
  &&	
  

board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  HUMAN	
  &&	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  EMPTY	
  )	
  
	
   	
   	
   	
  {	
  
	
   	
   	
   	
   	
  setPiece(WAYS_TO_WIN[i][1],	
  COMPUTER);	
  
	
   	
   	
   	
   	
  return;	
  
	
   	
   	
   	
  }	
  
	
   	
   	
  }	
  
	
   	
  }	
  
	
  }	
  

	
  
	
  int	
  BEST_MOVES[10]	
  =	
  {4,	
  0,	
  2,	
  6,	
  8,	
  1,	
  3,	
  5,	
  7};	
  

	
  
	
  //	
  if	
  one	
  of	
  the	
  best	
  squares	
  is	
  empty,	
  take	
  it	
  
	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  10;	
  ++i)	
  
	
  {	
  
	
   	
  if	
  (	
  isMoveLegal(BEST_MOVES[i])	
  )	
  
	
   	
  {	
  
	
   	
   	
  setPiece(BEST_MOVES[i],	
  COMPUTER);	
  
	
   	
   	
  break;	
  
	
   	
  }//	
  end	
  if	
  
	
  }//	
  end	
  for	
  

	
  
}//	
  end	
  computerMove	
  



/*	
  
Use	
  the	
  current	
  empty	
  pieces	
  to	
  have	
  the	
  computer	
  
choose	
  the	
  best	
  move	
  to	
  counter	
  the	
  last	
  human	
  move	
  
*/	
  
void	
  Board::computerMove()	
  
{	
  

	
  //	
  set	
  the	
  list	
  of	
  all	
  the	
  ways	
  to	
  win	
  
	
  int	
  WAYS_TO_WIN	
  [8][3]	
  =	
  {{0,	
  1,	
  2},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {3,	
  4,	
  5},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {6,	
  7,	
  8},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {0,	
  3,	
  6},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {1,	
  4,	
  7},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {2,	
  5,	
  8},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {0,	
  4,	
  8},	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  {2,	
  4,	
  6}};	
  

	
  
	
  //	
  if	
  computer	
  can	
  win,	
  take	
  that	
  move	
  
	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  8;	
  ++i)	
  
	
  {	
  
	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  COMPUTER	
  &&	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  COMPUTER	
  &&	
  

board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  EMPTY)	
  {	
  
	
   	
   	
  setPiece(WAYS_TO_WIN[i][2],	
  COMPUTER);	
  
	
   	
   	
  return;	
  
	
   	
  }	
  

	
  
	
   	
  else	
  {	
  
	
   	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  COMPUTER	
  &&	
  board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  

COMPUTER	
  &&	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  EMPTY)	
  {	
  
	
   	
   	
   	
  setPiece(WAYS_TO_WIN[i][0],	
  COMPUTER);	
  
	
   	
   	
   	
  return;	
  
	
   	
   	
  }	
  

	
  
	
   	
   	
  else	
  {	
  
	
   	
   	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  COMPUTER	
  &&	
  

board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  COMPUTER	
  &&	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  EMPTY	
  )	
  
	
   	
   	
   	
  {	
  
	
   	
   	
   	
   	
  setPiece(WAYS_TO_WIN[i][1],	
  COMPUTER);	
  
	
   	
   	
   	
   	
  return;	
  
	
   	
   	
   	
  }	
  
	
   	
   	
  }	
  
	
   	
  }	
  
	
  }	
  

	
  
	
  //	
  if	
  human	
  can	
  win,	
  block	
  that	
  move	
  
	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  8;	
  ++i)	
  
	
  {	
  
	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  HUMAN	
  &&	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  HUMAN	
  &&	
  

board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  EMPTY)	
  {	
  
	
   	
   	
  setPiece(WAYS_TO_WIN[i][2],	
  COMPUTER);	
  
	
   	
   	
  return;	
  
	
   	
  }	
  

	
  
	
   	
  else	
  {	
  
	
   	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  HUMAN	
  &&	
  board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  HUMAN	
  

&&	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  EMPTY)	
  {	
  
	
   	
   	
   	
  setPiece(WAYS_TO_WIN[i][0],	
  COMPUTER);	
  
	
   	
   	
   	
  return;	
  
	
   	
   	
  }	
  

	
  
	
   	
   	
  else	
  {	
  
	
   	
   	
   	
  if	
  (	
  board_pieces[WAYS_TO_WIN[i][0]]	
  ==	
  HUMAN	
  &&	
  

board_pieces[WAYS_TO_WIN[i][2]]	
  ==	
  HUMAN	
  &&	
  board_pieces[WAYS_TO_WIN[i][1]]	
  ==	
  EMPTY	
  )	
  
	
   	
   	
   	
  {	
  
	
   	
   	
   	
   	
  setPiece(WAYS_TO_WIN[i][1],	
  COMPUTER);	
  
	
   	
   	
   	
   	
  return;	
  
	
   	
   	
   	
  }	
  
	
   	
   	
  }	
  
	
   	
  }	
  
	
  }	
  

	
  
	
  int	
  BEST_MOVES[10]	
  =	
  {4,	
  0,	
  2,	
  6,	
  8,	
  1,	
  3,	
  5,	
  7};	
  

	
  
	
  //	
  if	
  one	
  of	
  the	
  best	
  squares	
  is	
  empty,	
  take	
  it	
  
	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  10;	
  ++i)	
  
	
  {	
  
	
   	
  if	
  (	
  isMoveLegal(BEST_MOVES[i])	
  )	
  
	
   	
  {	
  
	
   	
   	
  setPiece(BEST_MOVES[i],	
  COMPUTER);	
  
	
   	
   	
  break;	
  
	
   	
  }//	
  end	
  if	
  
	
  }//	
  end	
  for	
  

	
  
}//	
  end	
  computerMove	
  



Graphics	
  and	
  OpenGL!	
  



Figure 1-1 : White Rectangle on a Black Background

Example 1-1 : Chunk of OpenGL Code

#include <whateverYouNeed.h>

main() {

   InitializeAWindowPlease();

   glClearColor (0.0, 0.0, 0.0, 0.0);
   glClear (GL_COLOR_BUFFER_BIT);
   glColor3f (1.0, 1.0, 1.0);
   glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
   glBegin(GL_POLYGON);
      glVertex3f (0.25, 0.25, 0.0);
      glVertex3f (0.75, 0.25, 0.0);
      glVertex3f (0.75, 0.75, 0.0);
      glVertex3f (0.25, 0.75, 0.0);
   glEnd();
   glFlush();

   UpdateTheWindowAndCheckForEvents();
}

The first line of the main() routine initializes a window on the screen: The InitializeAWindowPlease()
routine is meant as a placeholder for window system-specific routines, which are generally not OpenGL
calls. The next two lines are OpenGL commands that clear the window to black: glClearColor()
establishes what color the window will be cleared to, and glClear() actually clears the window. Once the
clearing color is set, the window is cleared to that color whenever glClear() is called. This clearing color
can be changed with another call to glClearColor(). Similarly, the glColor3f() command establishes
what color to use for drawing objects - in this case, the color is white. All objects drawn after this point
use this color, until it’s changed with another call to set the color.

The next OpenGL command used in the program, glOrtho(), specifies the coordinate system OpenGL
assumes as it draws the final image and how the image gets mapped to the screen. The next calls, which
are bracketed by glBegin() and glEnd(), define the object to be drawn - in this example, a polygon with
four vertices. The polygon’s "corners" are defined by the glVertex3f() commands. As you might be able
to guess from the arguments, which are (x, y, z) coordinates, the polygon is a rectangle on the z=0 plane.



Finally, glFlush() ensures that the drawing commands are actually executed rather than stored in a
buffer awaiting additional OpenGL commands. The UpdateTheWindowAndCheckForEvents()
placeholder routine manages the contents of the window and begins event processing. 

Actually, this piece of OpenGL code isn’t well structured. You may be asking, "What happens if I try to
move or resize the window?" Or, "Do I need to reset the coordinate system each time I draw the
rectangle?" Later in this chapter, you will see replacements for both InitializeAWindowPlease() and
UpdateTheWindowAndCheckForEvents() that actually work but will require restructuring the code to
make it efficient.

OpenGL Command Syntax
As you might have observed from the simple program in the previous section, OpenGL commands use
the prefix gl and initial capital letters for each word making up the command name (recall
glClearColor(), for example). Similarly, OpenGL defined constants begin with GL_, use all capital
letters, and use underscores to separate words (like GL_COLOR_BUFFER_BIT). 

You might also have noticed some seemingly extraneous letters appended to some command names (for
example, the 3f in glColor3f() and glVertex3f()). It’s true that the Color part of the command name
glColor3f() is enough to define the command as one that sets the current color. However, more than one
such command has been defined so that you can use different types of arguments. In particular, the 3
part of the suffix indicates that three arguments are given; another version of the Color command takes
four arguments. The f part of the suffix indicates that the arguments are floating-point numbers. Having
different formats allows OpenGL to accept the user’s data in his or her own data format.

Some OpenGL commands accept as many as 8 different data types for their arguments. The letters used
as suffixes to specify these data types for ISO C implementations of OpenGL are shown in Table 1-1,
along with the corresponding OpenGL type definitions. The particular implementation of OpenGL that
you’re using might not follow this scheme exactly; an implementation in C++ or Ada, for example,
wouldn’t need to.

Table 1-1 : Command Suffixes and Argument Data Types



Suffix Data Type Typical Corresponding
C-Language Type

OpenGL Type
Definition

b 8-bit integer signed char GLbyte

s 16-bit integer short GLshort

i 32-bit integer int or long GLint, GLsizei

f 32-bit floating-point float GLfloat, GLclampf

d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean

us 16-bit unsigned integer unsigned short GLushort

ui 32-bit unsigned integer unsigned int or unsigned long GLuint, GLenum,
GLbitfield

Thus, the two commands

glVertex2i(1, 3);
glVertex2f(1.0, 3.0);

are equivalent, except that the first specifies the vertex’s coordinates as 32-bit integers, and the second
specifies them as single-precision floating-point numbers.

Note: Implementations of OpenGL have leeway in selecting which C data type to use to represent
OpenGL data types. If you resolutely use the OpenGL defined data types throughout your application,
you will avoid mismatched types when porting your code between different implementations.

Some OpenGL commands can take a final letter v, which indicates that the command takes a pointer to a
vector (or array) of values rather than a series of individual arguments. Many commands have both
vector and nonvector versions, but some commands accept only individual arguments and others require
that at least some of the arguments be specified as a vector. The following lines show how you might
use a vector and a nonvector version of the command that sets the current color:

glColor3f(1.0, 0.0, 0.0);

GLfloat color_array[] = {1.0, 0.0, 0.0};
glColor3fv(color_array);

Finally, OpenGL defines the typedef GLvoid. This is most often used for OpenGL commands that
accept pointers to arrays of values.

Finally, glFlush() ensures that the drawing commands are actually executed rather than stored in a
buffer awaiting additional OpenGL commands. The UpdateTheWindowAndCheckForEvents()
placeholder routine manages the contents of the window and begins event processing. 

Actually, this piece of OpenGL code isn’t well structured. You may be asking, "What happens if I try to
move or resize the window?" Or, "Do I need to reset the coordinate system each time I draw the
rectangle?" Later in this chapter, you will see replacements for both InitializeAWindowPlease() and
UpdateTheWindowAndCheckForEvents() that actually work but will require restructuring the code to
make it efficient.

OpenGL Command Syntax
As you might have observed from the simple program in the previous section, OpenGL commands use
the prefix gl and initial capital letters for each word making up the command name (recall
glClearColor(), for example). Similarly, OpenGL defined constants begin with GL_, use all capital
letters, and use underscores to separate words (like GL_COLOR_BUFFER_BIT). 

You might also have noticed some seemingly extraneous letters appended to some command names (for
example, the 3f in glColor3f() and glVertex3f()). It’s true that the Color part of the command name
glColor3f() is enough to define the command as one that sets the current color. However, more than one
such command has been defined so that you can use different types of arguments. In particular, the 3
part of the suffix indicates that three arguments are given; another version of the Color command takes
four arguments. The f part of the suffix indicates that the arguments are floating-point numbers. Having
different formats allows OpenGL to accept the user’s data in his or her own data format.

Some OpenGL commands accept as many as 8 different data types for their arguments. The letters used
as suffixes to specify these data types for ISO C implementations of OpenGL are shown in Table 1-1,
along with the corresponding OpenGL type definitions. The particular implementation of OpenGL that
you’re using might not follow this scheme exactly; an implementation in C++ or Ada, for example,
wouldn’t need to.

Table 1-1 : Command Suffixes and Argument Data Types



In the rest of this guide (except in actual code examples), OpenGL commands are referred to by their
base names only, and an asterisk is included to indicate that there may be more to the command name.
For example, glColor*() stands for all variations of the command you use to set the current color. If we
want to make a specific point about one version of a particular command, we include the suffix
necessary to define that version. For example, glVertex*v() refers to all the vector versions of the
command you use to specify vertices.

OpenGL as a State Machine
OpenGL is a state machine. You put it into various states (or modes) that then remain in effect until you
change them. As you’ve already seen, the current color is a state variable. You can set the current color
to white, red, or any other color, and thereafter every object is drawn with that color until you set the
current color to something else. The current color is only one of many state variables that OpenGL
maintains. Others control such things as the current viewing and projection transformations, line and
polygon stipple patterns, polygon drawing modes, pixel-packing conventions, positions and
characteristics of lights, and material properties of the objects being drawn. Many state variables refer to
modes that are enabled or disabled with the command glEnable() or glDisable().

Each state variable or mode has a default value, and at any point you can query the system for each
variable’s current value. Typically, you use one of the six following commands to do this:
glGetBooleanv(), glGetDoublev(), glGetFloatv(), glGetIntegerv(), glGetPointerv(), or
glIsEnabled(). Which of these commands you select depends on what data type you want the answer to
be given in. Some state variables have a more specific query command (such as glGetLight*(),
glGetError(), or glGetPolygonStipple()). In addition, you can save a collection of state variables on an
attribute stack with glPushAttrib() or glPushClientAttrib(), temporarily modify them, and later restore
the values with glPopAttrib() or glPopClientAttrib(). For temporary state changes, you should use
these commands rather than any of the query commands, since they’re likely to be more efficient.

See Appendix B for the complete list of state variables you can query. For each variable, the appendix
also lists a suggested glGet*() command that returns the variable’s value, the attribute class to which it
belongs, and the variable’s default value.

OpenGL Rendering Pipeline
Most implementations of OpenGL have a similar order of operations, a series of processing stages called
the OpenGL rendering pipeline. This ordering, as shown in Figure 1-2, is not a strict rule of how
OpenGL is implemented but provides a reliable guide for predicting what OpenGL will do.

If you are new to three-dimensional graphics, the upcoming description may seem like drinking water
out of a fire hose. You can skim this now, but come back to Figure 1-2 as you go through each chapter
in this book.

The following diagram shows the Henry Ford assembly line approach, which OpenGL takes to
processing data. Geometric data (vertices, lines, and polygons) follow the path through the row of boxes
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that includes evaluators and per-vertex operations, while pixel data (pixels, images, and bitmaps) are
treated differently for part of the process. Both types of data undergo the same final steps (rasterization
and per-fragment operations) before the final pixel data is written into the framebuffer. 

Figure 1-2 : Order of Operations

Now you’ll see more detail about the key stages in the OpenGL rendering pipeline.

Display Lists

All data, whether it describes geometry or pixels, can be saved in a display list for current or later use.
(The alternative to retaining data in a display list is processing the data immediately - also known as
immediate mode.) When a display list is executed, the retained data is sent from the display list just as if
it were sent by the application in immediate mode. (See Chapter 7 for more information about display
lists.)

Evaluators

All geometric primitives are eventually described by vertices. Parametric curves and surfaces may be
initially described by control points and polynomial functions called basis functions. Evaluators provide
a method to derive the vertices used to represent the surface from the control points. The method is a
polynomial mapping, which can produce surface normal, texture coordinates, colors, and spatial
coordinate values from the control points. (See Chapter 12 to learn more about evaluators.)

Per-Vertex Operations

For vertex data, next is the "per-vertex operations" stage, which converts the vertices into primitives.
Some vertex data (for example, spatial coordinates) are transformed by 4 x 4 floating-point matrices.
Spatial coordinates are projected from a position in the 3D world to a position on your screen. (See
Chapter 3 for details about the transformation matrices.)

If advanced features are enabled, this stage is even busier. If texturing is used, texture coordinates may
be generated and transformed here. If lighting is enabled, the lighting calculations are performed using
the transformed vertex, surface normal, light source position, material properties, and other lighting
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information to produce a color value.

Primitive Assembly

Clipping, a major part of primitive assembly, is the elimination of portions of geometry which fall
outside a half-space, defined by a plane. Point clipping simply passes or rejects vertices; line or polygon
clipping can add additional vertices depending upon how the line or polygon is clipped. 

In some cases, this is followed by perspective division, which makes distant geometric objects appear
smaller than closer objects. Then viewport and depth (z coordinate) operations are applied. If culling is
enabled and the primitive is a polygon, it then may be rejected by a culling test. Depending upon the
polygon mode, a polygon may be drawn as points or lines. (See "Polygon Details" in Chapter 2.)

The results of this stage are complete geometric primitives, which are the transformed and clipped
vertices with related color, depth, and sometimes texture-coordinate values and guidelines for the
rasterization step.

Pixel Operations

While geometric data takes one path through the OpenGL rendering pipeline, pixel data takes a different
route. Pixels from an array in system memory are first unpacked from one of a variety of formats into
the proper number of components. Next the data is scaled, biased, and processed by a pixel map. The
results are clamped and then either written into texture memory or sent to the rasterization step. (See
"Imaging Pipeline" in Chapter 8.)

If pixel data is read from the frame buffer, pixel-transfer operations (scale, bias, mapping, and clamping)
are performed. Then these results are packed into an appropriate format and returned to an array in
system memory.

There are special pixel copy operations to copy data in the framebuffer to other parts of the framebuffer
or to the texture memory. A single pass is made through the pixel transfer operations before the data is
written to the texture memory or back to the framebuffer.

Texture Assembly

An OpenGL application may wish to apply texture images onto geometric objects to make them look
more realistic. If several texture images are used, it’s wise to put them into texture objects so that you
can easily switch among them.

Some OpenGL implementations may have special resources to accelerate texture performance. There
may be specialized, high-performance texture memory. If this memory is available, the texture objects
may be prioritized to control the use of this limited and valuable resource. (See Chapter 9.) 

Rasterization

Rasterization is the conversion of both geometric and pixel data into fragments. Each fragment square
corresponds to a pixel in the framebuffer. Line and polygon stipples, line width, point size, shading



Note the restructuring of the code. To maximize efficiency, operations that need only be called once
(setting the background color and coordinate system) are now in a procedure called init(). Operations to
render (and possibly re-render) the scene are in the display() procedure, which is the registered GLUT
display callback.

Example 1-2 : Simple OpenGL Program Using GLUT: hello.c

#include <GL/gl.h>
#include <GL/glut.h>

void display(void)
{
/*  clear all pixels  */
    glClear (GL_COLOR_BUFFER_BIT);

/*  draw white polygon (rectangle) with corners at
 *  (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)  
 */
    glColor3f (1.0, 1.0, 1.0);
    glBegin(GL_POLYGON);
        glVertex3f (0.25, 0.25, 0.0);
        glVertex3f (0.75, 0.25, 0.0);
        glVertex3f (0.75, 0.75, 0.0);
        glVertex3f (0.25, 0.75, 0.0);
    glEnd();

/*  don’t wait!  
 *  start processing buffered OpenGL routines 
 */
    glFlush ();
}

void init (void) 
{
/*  select clearing (background) color       */
    glClearColor (0.0, 0.0, 0.0, 0.0);

/*  initialize viewing values  */
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
}

/* 
 *  Declare initial window size, position, and display mode
 *  (single buffer and RGBA).  Open window with "hello"
 *  in its title bar.  Call initialization routines.
 *  Register callback function to display graphics.
 *  Enter main loop and process events.
 */
int main(int argc, char** argv)
{
    glutInit(&argc, argv);
    glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
    glutInitWindowSize (250, 250); 
    glutInitWindowPosition (100, 100);
    glutCreateWindow ("hello");
    init ();
    glutDisplayFunc(display); 

    glutMainLoop();
    return 0;   /* ISO C requires main to return int. */
}

Handling Input Events

You can use these routines to register callback commands that are invoked when specified events occur.

glutReshapeFunc(void (* func)(int w, int h)) indicates what action should be taken when the
window is resized. 

glutKeyboardFunc(void (* func)(unsigned char key, int x, int y)) and glutMouseFunc(void
(* func)(int button, int state, int x, int y)) allow you to link a keyboard key or a mouse button with a
routine that’s invoked when the key or mouse button is pressed or released. 

glutMotionFunc(void (* func)(int x, int y)) registers a routine to call back when the mouse is
moved while a mouse button is also pressed.

Managing a Background Process

You can specify a function that’s to be executed if no other events are pending - for example, when the
event loop would otherwise be idle - with glutIdleFunc(void (* func)(void)). This routine takes a pointer
to the function as its only argument. Pass in NULL (zero) to disable the execution of the function.

Drawing Three-Dimensional Objects

GLUT includes several routines for drawing these three-dimensional objects:

cone icosahedron teapot

cube octahedron tetrahedron

dodecahedron sphere torus

You can draw these objects as wireframes or as solid shaded objects with surface normals defined. For
example, the routines for a cube and a sphere are as follows: 

void glutWireCube(GLdouble size); 

void glutSolidCube(GLdouble size);

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);

void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

All these models are drawn centered at the origin of the world coordinate system. (See for information
on the prototypes of all these drawing routines.)
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Animation
One of the most exciting things you can do on a graphics computer is draw pictures that move. Whether
you’re an engineer trying to see all sides of a mechanical part you’re designing, a pilot learning to fly an
airplane using a simulation, or merely a computer-game aficionado, it’s clear that animation is an
important part of computer graphics.

In a movie theater, motion is achieved by taking a sequence of pictures and projecting them at 24 per
second on the screen. Each frame is moved into position behind the lens, the shutter is opened, and the
frame is displayed. The shutter is momentarily closed while the film is advanced to the next frame, then
that frame is displayed, and so on. Although you’re watching 24 different frames each second, your
brain blends them all into a smooth animation. (The old Charlie Chaplin movies were shot at 16 frames
per second and are noticeably jerky.) In fact, most modern projectors display each picture twice at a rate
of 48 per second to reduce flickering. Computer-graphics screens typically refresh (redraw the picture)
approximately 60 to 76 times per second, and some even run at about 120 refreshes per second. Clearly,
60 per second is smoother than 30, and 120 is marginally better than 60. Refresh rates faster than 120,
however, are beyond the point of diminishing returns, since the human eye is only so good.

The key reason that motion picture projection works is that each frame is complete when it is displayed.
Suppose you try to do computer animation of your million-frame movie with a program like this:

open_window(); 
for (i = 0; i < 1000000; i++) { 
   clear_the_window(); 
   draw_frame(i); 
   wait_until_a_24th_of_a_second_is_over(); 
}

If you add the time it takes for your system to clear the screen and to draw a typical frame, this program
gives more and more disturbing results depending on how close to 1/24 second it takes to clear and
draw. Suppose the drawing takes nearly a full 1/24 second. Items drawn first are visible for the full 1/24
second and present a solid image on the screen; items drawn toward the end are instantly cleared as the
program starts on the next frame. They present at best a ghostlike image, since for most of the 1/24
second your eye is viewing the cleared background instead of the items that were unlucky enough to be
drawn last. The problem is that this program doesn’t display completely drawn frames; instead, you
watch the drawing as it happens.

Most OpenGL implementations provide double-buffering - hardware or software that supplies two
complete color buffers. One is displayed while the other is being drawn. When the drawing of a frame is
complete, the two buffers are swapped, so the one that was being viewed is now used for drawing, and
vice versa. This is like a movie projector with only two frames in a loop; while one is being projected on
the screen, an artist is desperately erasing and redrawing the frame that’s not visible. As long as the artist
is quick enough, the viewer notices no difference between this setup and one where all the frames are
already drawn and the projector is simply displaying them one after the other. With double-buffering,
every frame is shown only when the drawing is complete; the viewer never sees a partially drawn frame.

A modified version of the preceding program that does display smoothly animated graphics might look
like this:



OpenGL doesn’t have a swap_the_buffers() command because the feature might not be available on all
hardware and, in any case, it’s highly dependent on the window system. For example, if you are using
the X Window System and accessing it directly, you might use the following GLX routine:

void glXSwapBuffers(Display *dpy, Window window);

(See Appendix C for equivalent routines for other window systems.)

If you are using the GLUT library, you’ll want to call this routine:

void glutSwapBuffers(void);

Example 1-3 illustrates the use of glutSwapBuffers() in an example that draws a spinning square as
shown in Figure 1-3. The following example also shows how to use GLUT to control an input device
and turn on and off an idle function. In this example, the mouse buttons toggle the spinning on and off.

Figure 1-3 : Double-Buffered Rotating Square

Example 1-3 : Double-Buffered Program: double.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

static GLfloat spin = 0.0;

void init(void) 
{
   glClearColor (0.0, 0.0, 0.0, 0.0);
   glShadeModel (GL_FLAT);
}

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glPushMatrix();
   glRotatef(spin, 0.0, 0.0, 1.0);
   glColor3f(1.0, 1.0, 1.0);



   glRectf(-25.0, -25.0, 25.0, 25.0);
   glPopMatrix();
   glutSwapBuffers();
}

void spinDisplay(void)
{
   spin = spin + 2.0;
   if (spin > 360.0)
      spin = spin - 360.0;
   glutPostRedisplay();
}

void reshape(int w, int h)
{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   glOrtho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void mouse(int button, int state, int x, int y) 
{
   switch (button) {
      case GLUT_LEFT_BUTTON:
         if (state == GLUT_DOWN)
            glutIdleFunc(spinDisplay);
         break;
      case GLUT_MIDDLE_BUTTON:
         if (state == GLUT_DOWN)
            glutIdleFunc(NULL);
         break;
      default:
         break;
   }
}

/* 
 *  Request double buffer display mode.
 *  Register mouse input callback functions
 */
int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
   glutInitWindowSize (250, 250); 
   glutInitWindowPosition (100, 100);
   glutCreateWindow (argv[0]);
   init ();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape); 
   glutMouseFunc(mouse);
   glutMainLoop();
   return 0;
}

  OpenGL Programming Guide (Addison-Wesley



Team LRN



Team LRN



Team LRN



Team LRN



Team LRN



Team LRN



Team LRN



Chaorer 1 1  

Figure 11 - l 
Positive rotation directions 
about th(. coordinate axes are 
coun~erclockw~se, when looking 
toward the origm from a positive 
coordinate position on each azis. 

x' = .x cos 0 - y sin 0 

y' = x s i n 0  + y c o s 0  
t' = 2 

Parameter 8 specifies the rotation angle. In homogeneous coordinate form, the 
three-dimensional z-axis rotation equations are expressed as 
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Rotation of an object around the x axis is demonstrated in Fig. 11.6. 
Cyclically permuting coordinates in Eqs. 11-8 give us the transformation 

equations for a y-axis rotation: 

The matrix representation for y-axis rotation is 

An example of y-axis rotation is shown in Fig. 11-7. 
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glVertex2s(2, 3); 
glVertex3d(0.0, 0.0, 3.1415926535898); 
glVertex4f(2.3, 1.0, -2.2, 2.0); 

GLdouble dvect[3] = {5.0, 9.0, 1992.0};
glVertex3dv(dvect);

The first example represents a vertex with three-dimensional coordinates (2, 3, 0). (Remember that if it
isn’t specified, the z coordinate is understood to be 0.) The coordinates in the second example are (0.0,
0.0, 3.1415926535898) (double-precision floating-point numbers). The third example represents the
vertex with three-dimensional coordinates (1.15, 0.5, -1.1). (Remember that the x, y, and z coordinates
are eventually divided by the w coordinate.) In the final example, dvect is a pointer to an array of three
double-precision floating-point numbers. 

On some machines, the vector form of glVertex*() is more efficient, since only a single parameter needs
to be passed to the graphics subsystem. Special hardware might be able to send a whole series of
coordinates in a single batch. If your machine is like this, it’s to your advantage to arrange your data so
that the vertex coordinates are packed sequentially in memory. In this case, there may be some gain in
performance by using the vertex array operations of OpenGL. (See "Vertex Arrays.")

OpenGL Geometric Drawing Primitives

Now that you’ve seen how to specify vertices, you still need to know how to tell OpenGL to create a set
of points, a line, or a polygon from those vertices. To do this, you bracket each set of vertices between a
call to glBegin() and a call to glEnd(). The argument passed to glBegin() determines what sort of
geometric primitive is constructed from the vertices. For example, Example 2-3 specifies the vertices for
the polygon shown in Figure 2-6.

Example 2-3 : Filled Polygon

glBegin(GL_POLYGON);
   glVertex2f(0.0, 0.0);
   glVertex2f(0.0, 3.0);
   glVertex2f(4.0, 3.0);
   glVertex2f(6.0, 1.5);
   glVertex2f(4.0, 0.0);
glEnd();

Figure 2-6 : Drawing a Polygon or a Set of Points

If you had used GL_POINTS instead of GL_POLYGON, the primitive would have been simply the five
points shown in Figure 2-6. Table 2-2 in the following function summary for glBegin() lists the ten
possible arguments and the corresponding type of primitive.



Figure 2-3 : Valid and Invalid Polygons

The reason for the OpenGL restrictions on valid polygon types is that it’s simpler to provide fast
polygon-rendering hardware for that restricted class of polygons. Simple polygons can be rendered
quickly. The difficult cases are hard to detect quickly. So for maximum performance, OpenGL crosses
its fingers and assumes the polygons are simple.

Many real-world surfaces consist of nonsimple polygons, nonconvex polygons, or polygons with holes.
Since all such polygons can be formed from unions of simple convex polygons, some routines to build
more complex objects are provided in the GLU library. These routines take complex descriptions and
tessellate them, or break them down into groups of the simpler OpenGL polygons that can then be
rendered. (See "Polygon Tessellation" in Chapter 11 for more information about the tessellation
routines.) 

Since OpenGL vertices are always three-dimensional, the points forming the boundary of a particular
polygon don’t necessarily lie on the same plane in space. (Of course, they do in many cases - if all the z
coordinates are zero, for example, or if the polygon is a triangle.) If a polygon’s vertices don’t lie in the
same plane, then after various rotations in space, changes in the viewpoint, and projection onto the
display screen, the points might no longer form a simple convex polygon. For example, imagine a
four-point quadrilateral where the points are slightly out of plane, and look at it almost edge-on. You
can get a nonsimple polygon that resembles a bow tie, as shown in Figure 2-4, which isn’t guaranteed to
be rendered correctly. This situation isn’t all that unusual if you approximate curved surfaces by
quadrilaterals made of points lying on the true surface. You can always avoid the problem by using
triangles, since any three points always lie on a plane. 

Figure 2-4 : Nonplanar Polygon Transformed to Nonsimple Polygon

Rectangles

Since rectangles are so common in graphics applications, OpenGL provides a filled-rectangle drawing
primitive, glRect*(). You can draw a rectangle as a polygon, as described in "OpenGL Geometric
Drawing Primitives," but your particular implementation of OpenGL might have optimized glRect*()
for rectangles. 



Figure 2-7 : Geometric Primitive Types

As you read the following descriptions, assume that n vertices (v0, v1, v2, ... , vn-1) are described
between a glBegin() and glEnd() pair.

GL_POINTS Draws a point at each of the n vertices.

GL_LINES Draws a series of unconnected line segments. Segments are drawn
between v0 and v1, between v2 and v3, and so on. If n is odd, the last
segment is drawn between vn-3 and vn-2, and vn-1 is ignored.

GL_LINE_STRIP Draws a line segment from v0 to v1, then from v1 to v2, and so on,
finally drawing the segment from vn-2 to vn-1. Thus, a total of n-1 line
segments are drawn. Nothing is drawn unless n is larger than 1. There
are no restrictions on the vertices describing a line strip (or a line loop);
the lines can intersect arbitrarily.

GL_LINE_LOOP Same as GL_LINE_STRIP, except that a final line segment is drawn
from vn-1 to v0, completing a loop.

GL_TRIANGLES Draws a series of triangles (three-sided polygons) using vertices v0, v1,
v2, then v3, v4, v5, and so on. If n isn’t an exact multiple of 3, the final
one or two vertices are ignored.

GL_TRIANGLE_STRIP Draws a series of triangles (three-sided polygons) using vertices v0, v1,
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Figure 3-1 : The Camera Analogy

Note that these steps correspond to the order in which you specify the desired transformations in your
program, not necessarily the order in which the relevant mathematical operations are performed on an
object’s vertices. The viewing transformations must precede the modeling transformations in your code,
but you can specify the projection and viewport transformations at any point before drawing occurs.
Figure 3-2 shows the order in which these operations occur on your computer.



textbook on linear algebra.

A Simple Example: Drawing a Cube

Example 3-1 draws a cube that’s scaled by a modeling transformation (see Figure 3-3). The viewing
transformation, gluLookAt(), positions and aims the camera towards where the cube is drawn. A
projection transformation and a viewport transformation are also specified. The rest of this section walks
you through Example 3-1 and briefly explains the transformation commands it uses. The succeeding
sections contain the complete, detailed discussion of all OpenGL’s transformation commands.

Figure 3-3 : Transformed Cube

Example 3-1 : Transformed Cube: cube.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void) 
{
   glClearColor (0.0, 0.0, 0.0, 0.0);
   glShadeModel (GL_FLAT);
}

void display(void)
{
   glClear (GL_COLOR_BUFFER_BIT);
   glColor3f (1.0, 1.0, 1.0);
   glLoadIdentity ();             /* clear the matrix */
           /* viewing transformation  */
   gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
   glScalef (1.0, 2.0, 1.0);      /* modeling transformation */ 
   glutWireCube (1.0);
   glFlush ();
}

void reshape (int w, int h)
{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
   glMatrixMode (GL_PROJECTION);
   glLoadIdentity ();
   glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
   glMatrixMode (GL_MODELVIEW);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);

   glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize (500, 500); 
   glutInitWindowPosition (100, 100);
   glutCreateWindow (argv[0]);
   init ();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}

The Viewing Transformation

Recall that the viewing transformation is analogous to positioning and aiming a camera. In this code
example, before the viewing transformation can be specified, the current matrix is set to the identity
matrix with glLoadIdentity(). This step is necessary since most of the transformation commands
multiply the current matrix by the specified matrix and then set the result to be the current matrix. If you
don’t clear the current matrix by loading it with the identity matrix, you continue to combine previous
transformation matrices with the new one you supply. In some cases, you do want to perform such
combinations, but you also need to clear the matrix sometimes.

In Example 3-1, after the matrix is initialized, the viewing transformation is specified with gluLookAt().
The arguments for this command indicate where the camera (or eye position) is placed, where it is
aimed, and which way is up. The arguments used here place the camera at (0, 0, 5), aim the camera lens
towards (0, 0, 0), and specify the up-vector as (0, 1, 0). The up-vector defines a unique orientation for
the camera.

If gluLookAt() was not called, the camera has a default position and orientation. By default, the camera
is situated at the origin, points down the negative z-axis, and has an up-vector of (0, 1, 0). So in Example
3-1, the overall effect is that gluLookAt() moves the camera 5 units along the z-axis. (See "Viewing and
Modeling Transformations" for more information about viewing transformations.) 

The Modeling Transformation

You use the modeling transformation to position and orient the model. For example, you can rotate,
translate, or scale the model - or perform some combination of these operations. In Example 3-1,
glScalef() is the modeling transformation that is used. The arguments for this command specify how
scaling should occur along the three axes. If all the arguments are 1.0, this command has no effect. In
Example 3-1, the cube is drawn twice as large in the y direction. Thus, if one corner of the cube had
originally been at (3.0, 3.0, 3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). The effect of
this modeling transformation is to transform the cube so that it isn’t a cube but a rectangular box. 

Try This

Change the gluLookAt() call in Example 3-1 to the modeling transformation glTranslatef() with
parameters (0.0, 0.0, -5.0). The result should look exactly the same as when you used gluLookAt().
Why are the effects of these two commands similar?

Note that instead of moving the camera (with a viewing transformation) so that the cube could be
viewed, you could have moved the cube away from the camera (with a modeling transformation). This



clipping planes, thereby truncating the pyramid. Note that gluPerspective() is limited to creating
frustums that are symmetric in both the x- and y-axes along the line of sight, but this is usually what you
want. 

Figure 3-14 : Perspective Viewing Volume Specified by gluPerspective()

void gluPerspective(GLdouble fovy, GLdouble aspect, 
GLdouble near, GLdouble far);

Creates a matrix for a symmetric perspective-view frustum and multiplies the current matrix by it.
fovy is the angle of the field of view in the x-z plane; its value must be in the range [0.0,180.0].
aspect is the aspect ratio of the frustum, its width divided by its height. near and far values the
distances between the viewpoint and the clipping planes, along the negative z-axis. They should
always be positive. 

Just as with glFrustum(), you can apply rotations or translations to change the default orientation of the
viewing volume created by gluPerspective(). With no such transformations, the viewpoint remains at
the origin, and the line of sight points down the negative z-axis.

With gluPerspective(), you need to pick appropriate values for the field of view, or the image may look
distorted. For example, suppose you’re drawing to the entire screen, which happens to be 11 inches high.
If you choose a field of view of 90 degrees, your eye has to be about 7.8 inches from the screen for the
image to appear undistorted. (This is the distance that makes the screen subtend 90 degrees.) If your eye
is farther from the screen, as it usually is, the perspective doesn’t look right. If your drawing area
occupies less than the full screen, your eye has to be even closer. To get a perfect field of view, figure
out how far your eye normally is from the screen and how big the window is, and calculate the angle the
window subtends at that size and distance. It’s probably smaller than you would guess. Another way to
think about it is that a 94-degree field of view with a 35-millimeter camera requires a 20-millimeter lens,
which is a very wide-angle lens. (See "Troubleshooting Transformations" for more details on how to
calculate the desired field of view.)

The preceding paragraph mentions inches and millimeters - do these really have anything to do with
OpenGL? The answer is, in a word, no. The projection and other transformations are inherently unitless.
If you want to think of the near and far clipping planes as located at 1.0 and 20.0 meters, inches,
kilometers, or leagues, it’s up to you. The only rule is that you have to use a consistent unit of



measurement. Then the resulting image is drawn to scale. 

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more informally,
a box (see Figure 3-15). Unlike perspective projection, the size of the viewing volume doesn’t change
from one end to the other, so distance from the camera doesn’t affect how large an object appears. This
type of projection is used for applications such as creating architectural blueprints and computer-aided
design, where it’s crucial to maintain the actual sizes of objects and angles between them as they’re
projected.

Figure 3-15 : Orthographic Viewing Volume

The command glOrtho() creates an orthographic parallel viewing volume. As with glFrustum(), you
specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom, 
GLdouble top, GLdouble near, GLdouble far); 

Creates a matrix for an orthographic parallel viewing volume and multiplies the current matrix by
it. (left, bottom, -near) and (right, top, -near) are points on the near clipping plane that are
mapped to the lower-left and upper-right corners of the viewport window, respectively. (left,
bottom, -far) and (right, top, -far) are points on the far clipping plane that are mapped to the same
respective corners of the viewport. Both near and far can be positive or negative.

With no other transformations, the direction of projection is parallel to the z-axis, and the viewpoint
faces toward the negative z-axis. Note that this means that the values passed in for far and near are used
as negative z values if these planes are in front of the viewpoint, and positive if they’re behind the
viewpoint. 

For the special case of projecting a two-dimensional image onto a two-dimensional screen, use the
Utility Library routine gluOrtho2D(). This routine is identical to the three-dimensional version,
glOrtho(), except that all the z coordinates for objects in the scene are assumed to lie between -1.0 and
1.0. If you’re drawing two-dimensional objects using the two-dimensional vertex commands, all the z
coordinates are zero; thus, none of the objects are clipped because of their z values.
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